Predicting injection profiles using ANFIS
نویسندگان
چکیده
Decision making pertaining to injection profiles during oilfield development is one of the most important factors that affect the oilfields’ performance. Since injection profiles are affected by multiple geological and development factors, it is difficult to model their complicated, non-linear relationships using conventional approaches. In this paper, two adaptivenetwork-based fuzzy inference systems (ANFIS) based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based FIS, named ANFIS-SUB. We compare the performance of resultant FIS and study the effect of parameters. A real-world injection profile data set from the Daqing Oilfield, China is used. FIS are generated and tested using training and testing data from that data set. The impact of data quality on the performance of FIS is also studied. Experiments demonstrate that although soft computing methods are somewhat of tolerant of inaccurate inputs, cleaned data results in more robust models for practical problems. ANFIS-GRID outperforms ANFIS-SUB due to its simplicity in parameter selection and its fitness in the target problem. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
An Application of Computational Intelligence Technique for Predicting Surface Roughness in End Milling of Inconel-718
In this paper, an attempt has been made to design an computational intelligence technique based expert system using Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting surface roughness in end milling of Inconel 718. Two different types of membership functions are adopted for analysis in ANFIS training and compared their differences regarding the accuracy rate of the surface roughness ...
متن کاملPredicting the Risk of Fault-Induced Water Inrush Using the Adaptive Neuro-Fuzzy Inference System
Sudden water inrush has been a deadly killer in underground engineering for decades. Currently, especially in developing countries, frequent water inrush accidents still kill a large number of miners every year. In this study, an approach for predicting the probability of fault-induced water inrush in underground engineering using the adaptive neuro-fuzzy inference system (ANFIS) was developed....
متن کاملPredicting Packet Transmission Data over IP Networks Using Adaptive Neuro-Fuzzy Inference Systems
Problem statement: The statistical modeling for predicting network traffic has now become a major tool used for network and is of significant interest in many domains: Adaptive application, congestion and admission control, wireless, network management and network anomalies. To comprehend the properties of IP-network traffic and system conditions, many kinds of reports based on measured network...
متن کاملModeling of transfer length of prestressing strands using genetic programming and neuro-fuzzy
In this study, the efficiency of neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the transfer length of prestressing strands in prestressed concrete beams was investigated. Many models suggested for the transfer length of prestressing strands usually consider one or two parameters and do not provide consistent accurate prediction. The alternative appr...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 177 شماره
صفحات -
تاریخ انتشار 2007